Series BCC

R414000188

AVENTICS Series BCC Bellow actuators

2024-03-15

AVENTICS Series BCC Bellow actuators

The AVENTICS Series BCC cylinders are bellow cylinders with removable mounting parts. Users have the option of replacing the rubber bellows themselves. Mounting via internal thread or threaded bolt.

Technical data

Industry Industrial Bellows double

Type Bellow actuator with mounting ring and cover

Functional principle Single-acting, retracted without pressure

Compressed air connection G 3/8
Cover diameter 110 mm

Feature 4 1/2x2

Max. permissible angle of tilt 25 °

Max. effective stroke 75 mm

Min. radial installation space 140 mm
Min. installation height 65 mm
Max. installation height 140 mm
Min. force 2400 N
Max. force 5700 N
Min. working pressure 0 bar
Max. working pressure 8 bar

Max. working pressure 8 bar
Min. ambient temperature -30 °C
Max. ambient temperature 90 °C

Medium Compressed air

Series BCC

R414000188

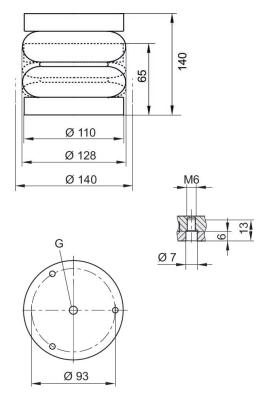
AVENTICS Series BCC Bellow actuators

Reduced service life at a temperature greater than	70 °C	2024-03-15
Pressure for determining forces	6 bar	
Weight	1 kg	

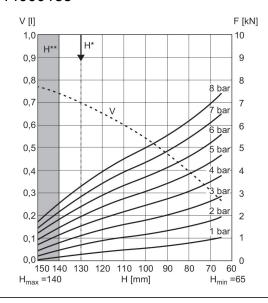
Material

Material front cover Aluminum
Part No. R414000188

Technical information


Compliance with the minimum height H min. as well as the maximum height H max. must be ensured with end stops.

Use at operating height ≥ Hmax: only permitted upon approval by AVENTICS


Further information on vibration isolation can be found in the "Technical information" document (available in the MediaCentre).

The bellow can be exchanged.

Dimensions

Force-displacement diagram R414000188

V = volume H = height H* = recommended operating height for vibration isolation H** = use permitted only upon approval by AVENTICS 1 kN = 1000 N