AVENTICS Series EBS Ejectors

Technical data

The AVENTICS Series EBS ejectors are the convincing and talented multi-taskers within the AVENTICS ejector Series. Parallel to the main advantages of this ejector Series, these ejectors offer additional benefits due to their enormous versatility.

Industry
Activation
Note
Туре
Version
with silencer
Nozzle Ø
vacuum switch
Min. working pressure
Max. working pressure
Min. ambient temperature
Max. ambient temperature
Min. medium temperature
Max. medium temperature
Medium
Min. oil content of compressed air
Max. oil content of compressed air
Max. particle size
Compressed air connection

Industrial Electrically Thread connection Ejector electrical control, T-design with silencer 2.5 mm electronic adjustable 3 bar 6 bar 0°C 50 °C 0°C 50 °C Compressed air 0 mg/m³ 1 mg/m³ 5 µm G 1/4

R412010181

Vacuum connection+	G 3/8
Max. suction capacity	223 I/min
Air consumption at p.opt.	320 I/min
Max. vacuum level at p.opt	84 %
Sound pressure level intake effect	70 dB
Sound pressure level intake effect	78 dB
Protection against overpressure (max.)	5 bar
release valve	release valve
Protection class	IP40
Duty cycle according to DIN VDE 0580 standard	100 %
Operational voltage DC	24 V
Hysteresis	2% of the final value, fixed
Precision (% of full scale value)	± 3 %
Repeatability (% of full scale value)	± 1 %
Voltage tolerance DC	- 5% / +10%
Power consumption solenoid valve	1.3 W
Switching point	adjustable 0 100%
Weight	0.152 kg
Housing material	Polyamide fiber-glass reinforced
Seal material	Acrylonitrile butadiene rubber
Nozzle material	Aluminum
Silencer material	Polyethylene
Material pressure sensor	Polycarbonate
Part No.	R412010181

Technical information

Note: All data refers to an ambient pressure of [[1,013] bar] and an ambient temperature of [[20]°C]. The pressure dew point must be at least 15 °C less than ambient and medium temperature and may not exceed 3 °C.

R412010181

Fig. 2

vacuum switch is rotatable and exchangeable
Solenoid valve for vacuum ON/OFF
Solenoid valve for release pulse

R412010181

1) vacuum switch is rotatable and exchangeable

2) Solenoid valve for vacuum ON/OFF3) Release valve from memory

R412010181

Fig. 3

1) vacuum switch is rotatable and exchangeable

2) Solenoid valve for vacuum ON/OFF

3) Solenoid valve for release pulse

Vacuum p2 depending on working pressure p1

1) = \emptyset nozzle 0.5 mm 2) = \emptyset nozzle 0.7 mm 3) optimum working pressure

1) = \emptyset nozzle 1.0 mm 2) = \emptyset nozzle 1.5 mm 3) optimum working pressure

R412010181

1) = Ø nozzle 2.0 mm 2) = Ø nozzle 2.5 mm 3) optimum working pressure

Suction capacity qs depending on working pressure p1

1) = \emptyset nozzle 0.5 mm 2) = \emptyset nozzle 0.7 mm 3) optimum working pressure

1) = \emptyset nozzle 1.0 mm 2) = \emptyset nozzle 1.5 mm 3) optimum working pressure

Evacuation time tE depending on vacuum p2 for 1 I volume (with optimal operating pressure p1opt)

1) = Ø nozzle 0.5 mm 2) = Ø nozzle 0.7 mm

1) = Ø nozzle 2.0 mm 2) = Ø nozzle 2.5 mm
3) optimum working pressure

R412010181

3)

1)

6 p, [bar]

3)

4

4,5 5 5,5

1) = Ø nozzle 2.0 mm 2) = Ø nozzle 2.5 mm

q _s [l/min]

160

140

120

100

80

60

40 20

0

Air consumption qv depending on working pressure p1

1) = Ø nozzle 0.5 mm 2) = Ø nozzle 0.7 mm 3) optimum working pressure

1) = Ø nozzle 1.0 mm 2) = Ø nozzle 1.5 mm

3,5

2,5

3) optimum working pressure

1) = \emptyset nozzle 2.0 mm 2) = \emptyset nozzle 2.5 mm 3) optimum working pressure

