
Ejector, Series EBS

R412007453

AVENTICS Series EBS Ejectors

The AVENTICS Series EBS ejectors are the convincing and talented multi-taskers within the AVENTICS ejector Series. Parallel to the main advantages of this ejector Series, these ejectors offer additional benefits due to their enormous versatility.

Technical data

Industry Industrial
Activation Pneumatically
Note push-in fitting
Type Ejector

Version pneumatic control, T-design

with silencer with silencer

Nozzle Ø 2 mm

Min. working pressure 3 bar

Max. working pressure 6 bar

Min. ambient temperature 0 °C

Max. ambient temperature 60 °C

Min. medium temperature 0 °C

Max. medium temperature 60 °C

Medium Compressed air

Min. oil content of compressed air 0 mg/m^3 Max. oil content of compressed air 1 mg/m^3 Max. particle size $5 \text{ }\mu\text{m}$ Compressed air connection \emptyset 8 Vacuum connection+ \emptyset 10

Ejector, Series EBS

R412007453

Max. suction capacity	123 I/min
Air consumption at p.opt.	208 I/min
Max. vacuum level at p.opt	86 %
Sound pressure level intake effect	68 dB
Sound pressure level intake effect	77 dB
Weight	0.05 kg

Housing material Polyamide fiber-glass reinforced Seal material Acrylonitrile butadiene rubber

Nozzle material Aluminum

Material release ring Polyamide

Silencer material Polyethylene

Part No. R412007453

Technical information

Note: All data refers to an ambient pressure of [[1,013] bar] and an ambient temperature of [[20]°C]. The pressure dew point must be at least 15 °C less than ambient and medium temperature and may not exceed 3 °C.

Fig. 3

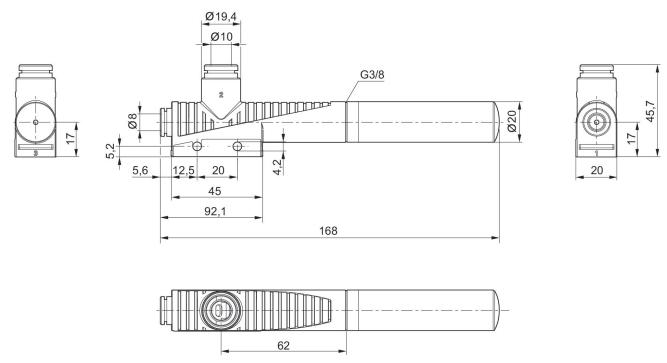
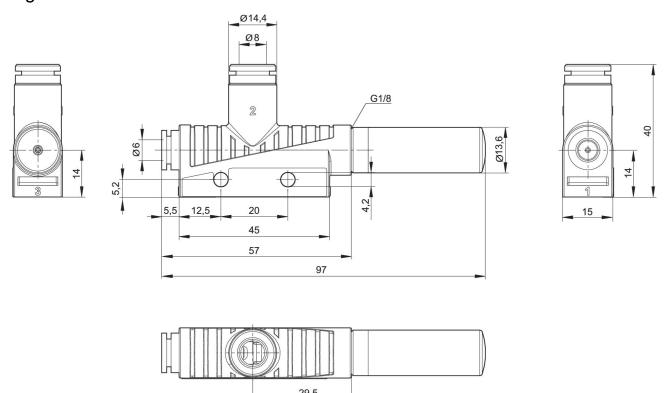
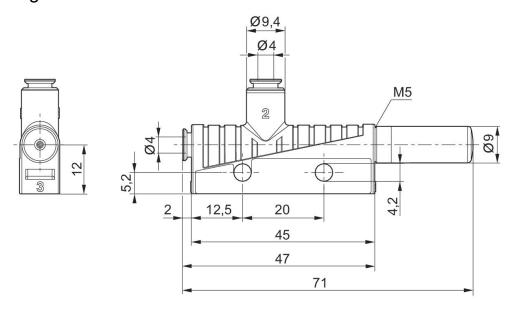
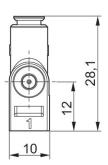
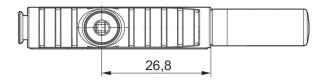
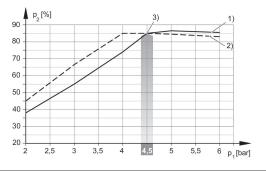
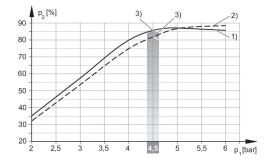
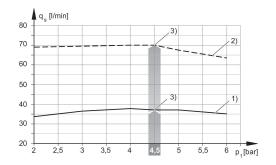
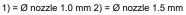


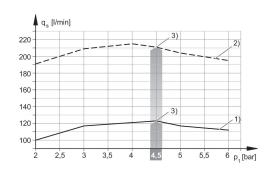
Fig. 2

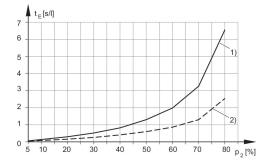

Fig. 1



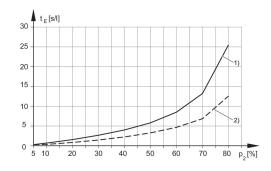



^{1) =} Ø nozzle 1.0 mm 2) = Ø nozzle 1.5 mm 3) optimum working pressure

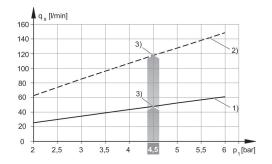
^{1) =} Ø nozzle 2.0 mm 2) = Ø nozzle 2.5 mm 3) optimum working pressure



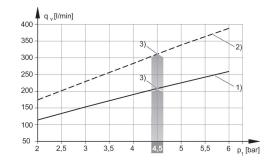
³⁾ optimum working pressure



^{1) =} Ø nozzle 2.0 mm 2) = Ø nozzle 2.5 mm



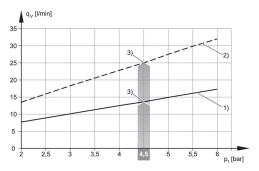
1) = Ø nozzle 1.0 mm 2) = Ø nozzle 1.5 mm

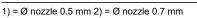

Evacuation time tE depending on vacuum p2 for 1 l volume (with optimal operating pressure p1opt)

1) = Ø nozzle 0.5 mm 2) = Ø nozzle 0.7 mm

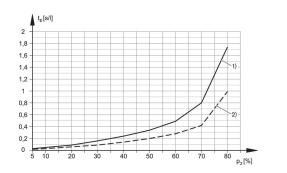
^{1) =} Ø nozzle 1.0 mm 2) = Ø nozzle 1.5 mm

^{1) =} \emptyset nozzle 2.0 mm 2) = \emptyset nozzle 2.5 mm


³⁾ optimum working pressure


³⁾ optimum working pressure

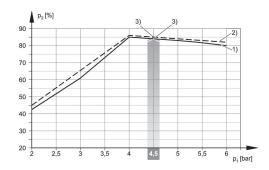
³⁾ optimum working pressure


R412007453

Air consumption qv depending on working pressure p1



³⁾ optimum working pressure


^{1) =} Ø nozzle 2.0 mm 2) = Ø nozzle 2.5 mm

Suction capacity qs depending on working pressure p1

^{1) =} \emptyset nozzle 0.5 mm 2) = \emptyset nozzle 0.7 mm

Vacuum p2 depending on working pressure p1

- 1) = \emptyset nozzle 0.5 mm 2) = \emptyset nozzle 0.7 mm
- 3) optimum working pressure

³⁾ optimum working pressure